首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   4篇
  国内免费   3篇
测绘学   12篇
大气科学   25篇
地球物理   33篇
地质学   93篇
海洋学   3篇
天文学   71篇
综合类   1篇
自然地理   8篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   11篇
  2017年   17篇
  2016年   11篇
  2015年   9篇
  2014年   11篇
  2013年   11篇
  2012年   9篇
  2011年   15篇
  2010年   7篇
  2009年   15篇
  2008年   11篇
  2007年   11篇
  2006年   11篇
  2005年   11篇
  2004年   11篇
  2003年   8篇
  2002年   5篇
  2001年   9篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   6篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有246条查询结果,搜索用时 24 毫秒
241.
The section of about 12 km of National highway 222 passing through the Malshej Ghat experience frequent slope failure due to complex geological condition, heavy rainfall and slope geometry. The area is part of Western Ghat Deccan trap and slope masses are made of basalt and its weathered crust (debris/soil). The soil slope failure problem mainly occur in rainy seasons due to induced pore water pressure and reduced strength of the slope mass. The present study has been carried out to investigate the slope forming material and assess the stability of soil slopes by numerical approach. For the identification of the vulnerable zones, field study has been carried out and five vulnerable soil slopes identified namely MGS1, MGS2, MGS3, MGS4 and MGS5 on the basis of degree of weathering and slope geometry. The laboratory experiments were carried out to determine the strength properties of the geomaterials. All the input variables acquired from the field and laboratory experiments have been used for numerical simulation, which was performed with the help of limit equilibrium method (LEM) and finite element method (FEM). Numerical analysis provides understanding of the slope behaviour and illustrates that MGS1 and MGS3 are stable slopes, MGS2 and MGS4 are critically stable, whereas, slope MGS5 is unstable. This study recommend the protection of soil slopes and suggest that more detailed investigation is required for long term remedial measures to prevent risk of damage in Malshej Ghat.  相似文献   
242.
The study focuses on analysis of primary and secondary fluid inclusions present in quartz veins hosted in the phyllites to explore the stress and temperature conditions at the time of formation of metasediment sequences of the of Parsoi Formation, central India. The results reveal the two-phase liquid-rich fluid inclusions that indicate that the intrusions of quartz veins in phyllite may have taken place between the temperature from 168.8°C to 256.3°C with an average of 205.55°C from a magmatic moderately saline fluid (3.7 to 18.29 wt. % NaCl equiv.). The final ice-melting temperatures ranges from -14.6°C to -2.2°C which indicate that the aqueous fluids are mainly H2O-NaCl. The density distribution of fluid inclusions rich in liquid H2O only are unimodel and low in natures and appears to be entrapped between pressure 1.666 to 2.125 kbar at depth of 200m. The study supports epithermal nature of fluid inclusions. The characteristic of fluid inclusions along with lithological and structural peculiarities, nature of structural features may be helpful in exploring the future potential zone of gold mineralization in similar types of area.  相似文献   
243.
244.
Understanding multiphase transport within saline aquifers is necessary for safe and efficient CO2 sequestration. To that end, numerous full‐physics codes exist for rigorously modeling multiphase flow within porous and permeable rock formations. High‐fidelity simulation with such codes is data‐ and computation‐intensive, and may not be suitable for screening‐level calculations. Alternatively, under conditions of vertical equilibrium, a class of sharp‐interface models result in simplified relationships that can be solved with limited computing resources and geologic/fluidic data. In this study, the sharp‐interface model of Nordbotten and Celia (2006a,2006b) is evaluated against results from a commercial full‐physics simulator for a semi‐confined system with vertical permeability heterogeneity. In general, significant differences were observed between the simulator and the sharp‐interface model results. A variety of adjustments were made to the sharp‐interface model including modifications to the fluid saturation and effective viscosity in the two‐phase region behind the CO2‐brine interface. These adaptations significantly improved the predictive ability of the sharp interface model while maintaining overall tractability.  相似文献   
245.
Delivery of sulfate to petroleum hydrocarbons (PHCs) source zones and groundwater plumes is desirable to enhance biodegradation rates when treatment has become limited due to depletion of sulfate. Sulfate land application involves spreading sulfate salts on ground surface and allowing their dissolution and infiltration of sulfate into subsurface. The objectives of this pilot-scale investigation were to capture the vertical transport of sulfate beneath an application area, confirm that sulfate reduction was occurring, and explore how the added sulfate affected biodegradation of benzene and toluene. Approximately 4000 kg of gypsum was spread over a 30 m × 30 m study area above a smear zone located approximately 2 m below-ground surface. Precipitation was augmented by two irrigation events. Groundwater samples, collected over 1058 days from multilevel wells and a conventional long-screened monitoring well, were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), sulfate, bromide, dissolved inorganic carbon (DIC) and methane. Compound-specific isotope analyses (CSIA) for benzene and toluene, and isotope analyses of 13C-DIC and 34S-SO42− were performed. Following application, an increase in sulfate concentration was noted in the smear zone. 34S-SO42− enrichment and 13C-DIC depletion indicated that sulfate reduction and mineralization of PHCs were enhanced. CSIA results provided unequivocal evidence of anaerobic biodegradation of benzene and toluene. After 1058 days when sulfate was depleted, methane concentrations were about three times greater than baseline conditions suggesting syntrophic benefit of the delivered sulfate. Observations from this investigation support the viability of sulfate land application to enhance biodegradation rates in shallow PHC smear zones.  相似文献   
246.
The atmospheric carbon dioxide (CO2) concentration has been consistently increasing each year throughout the world. Internal combustion (IC) engines are significant contributors to CO2 emissions. This study explores the possibility of employing effective biomass-based adsorbents to mitigate CO2 from a diesel engine exhaust. As a first step, two distinct agro-wastes, namely, i) corn cob and ii) sugarcane bagasse, are used to prepare inexpensive and efficient activated carbons. The two main steps in the activated carbon preparation are a) carbonization and b) activation. The derived activated carbons are subjected to discrete analytical techniques to examine their structural and textural characteristics, surface functional groups, and physical, chemical, and adsorptive properties. As a second step, the exhaust treatment chamber unit is filled with the adsorbents one by one and is connected to the exhaust of the constant pressure heat addition engine. A single-cylinder, four-stroke, naturally-aspirated, air-cooled, direct injection (DI) compression ignition (CI) engine is used in the experimental investigations. The essential findings show that ≈68 and 60% of CO2 emissions are adsorbed in the test engine by utilizing corn cob and sugarcane bagasse adsorbents, respectively. The results show that during the D100 and JME20 operations, the prospective adsorbents can curb more than 40% of overall CO2 emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号